Solution (\#1250) (i) For each t, let $A(t)$ denote an orthogonal matrix which is differentiable with respect to t. Then

$$
A(t) A(t)^{T}=I
$$

If we differentiate with respect to t then

$$
A^{\prime}(t) A(t)^{T}+A(t) A^{\prime}(t)^{T}=0
$$

and so

$$
M(t)+M(t)^{T}=0
$$

where

$$
M(t)=A^{\prime}(t) A(t)^{T} .
$$

So we can write

$$
M(t)=\left(\begin{array}{ccc}
0 & \gamma & -\beta \\
-\gamma & 0 & \alpha \\
\beta & -\alpha & 0
\end{array}\right)
$$

for some α, β, γ which are dependent on t.
(ii) For a fixed vector \mathbf{v}_{0} define $\mathbf{v}(t)=A(t) \mathbf{v}_{0}$. As $A(t)$ is orthogonal we have

$$
\mathbf{v}^{\prime}(t)=A^{\prime}(t) \mathbf{v}_{0}=A^{\prime}(t) A(t)^{T} A(t) \mathbf{v}_{0}=M(t) \mathbf{v}(t)
$$

Now by \#889

$$
\left(\begin{array}{ccc}
0 & \gamma & -\beta \\
-\gamma & 0 & \alpha \\
\beta & -\alpha & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \wedge\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

and so we set

$$
\boldsymbol{\omega}(t)=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
$$

