Solution (#1256) (i) Let ϕ be a step function on [a, b]. Then there are subintervals J_1, \ldots, J_n and real numbers c_1, \ldots, c_n such that

$$\phi = \sum_{k=1}^{n} c_k \mathbf{1}_{J_k}.$$

Let a_1, a_2, \ldots, a_m be the points where ϕ changes value – there can only be finitely many such points as ϕ can only change value at an end of a subinterval J_i . The function ϕ is constant on each of the subintervals

$$[a_i, a_i]$$
 and (a_i, a_{i+1})

say taking values r_i and s_i and these subintervals are disjoint by construction. So

$$\phi = \sum_{k=1}^{m} r_k \mathbf{1}_{[a_i, a_i]} + \sum_{k=1}^{m-1} s_k \mathbf{1}_{(a_i, a_{i+1})}$$

as desired.

(ii) Now let ϕ and ψ be step functions on [a, b]. There are finitely many points b_1, b_2, \ldots, b_m be the points where ϕ or ψ change value. Thus ϕ and ψ are both constant on each of the subintervals

$$[b_i, b_i]$$
 and (b_i, b_{i+1}) .

So we may take these subintervals as I_1, \ldots, I_N and we have

$$\phi = \sum_{k=1}^{N} y_k \mathbf{1}_{I_k}$$
 and $\psi = \sum_{k=1}^{N} Y_k \mathbf{1}_{I_k}$

for some scalars $y_1, \ldots, y_N, Y_1, \ldots, Y_N$.