Solution (\#1271) Let f be an integrable function on $[a, b]$ and let $\varepsilon>0$. Then there exist step functions ϕ and ψ such that

$$
\phi(x) \leqslant f(x) \leqslant \psi(x) \quad \text { and } \quad 0 \leqslant \int_{a}^{b}(\psi(x)-\phi(x)) \mathrm{d} x<\varepsilon
$$

Then $\min \{|\phi|,|\psi|\}$ and $\max \{|\phi|,|\psi|\}$ are step functions with

$$
\min \{|\phi|,|\psi|\} \leqslant|f| \leqslant \max \{|\phi|,|\psi|\}
$$

and by the triangle inequality

$$
\max \{|\phi|,|\psi|\}-\min \{|\phi|,|\psi|\}=\| \psi|-|\phi|| \leqslant|\psi-\phi|=\psi-\phi,
$$

so that

$$
0 \leqslant \int_{a}^{b}(\max \{|\phi(x)|,|\psi(x)|\}-\min \{|\phi(x)|,|\psi(x)|\}) \mathrm{d} x<\varepsilon
$$

Hence $|f|$ is integrable and further as

$$
-|f| \leqslant f \leqslant|f|
$$

then by Proposition 5.12(b) we have

$$
-\int_{a}^{b}|f| \mathrm{d} x \leqslant \int_{a}^{b} f \mathrm{~d} x \leqslant \int_{a}^{b}|f| \mathrm{d} x
$$

so that

$$
\left|\int_{a}^{b} f \mathrm{~d} x\right| \leqslant \int_{a}^{b}|f| \mathrm{d} x .
$$

Viewing integrals as "continuous" sums, this inequality might be seen as a continuous version of the discrete triangle inequality

$$
\left|\sum_{i=1}^{n} a_{i}\right| \leqslant \sum_{i=1}^{n}\left|a_{i}\right|
$$

for finite sums.
Finally if g is a second integrable function then $f-g$ is integrable and so therefore is $|f-g|$ by the above. We then need only note

$$
\max \{f, g\}=\frac{f+g}{2}+\frac{|f-g|}{2}, \quad \min \{f, g\}=\frac{f+g}{2}-\frac{|f-g|}{2}
$$

are integrable.

