
Solution (#1272) Let f, g be integrable functions on [a, b] . For now assume that f(x) � 0 and g(x) � 0 for all
a � x � b. As integrable functions are, by definition, bounded there exist R,S > 0 such that 0 � f � R and
0 � g � S.
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(The reasoning behind these choices will become clearer towards the end of the proof.)
We may assume that the step functions φ
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are themselves non-negative (if not we might replace φi with

max{0, φi}); we may also assume that ψ2 � S + 1 (if not we might replace ψ2 with min {ψ2, S + 1}). So we have
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Now by Proposition 5.6(b)
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Hence
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We have shown above that the product of two non-negative integrable functions is integrable. Suppose more
generally that f and g are integrable (and not necessarily non-negative). As f, g are bounded then there exist M and
N such that f +M � 0 and g +N � 0. Then f +M and g +N are integrable and so is

(f +M)(g +N) = fg +Mg +Nf +MN

by our previous argument. But then by Proposition 5.12(a)

fg = (f +M)(g +N)−Mg −Nf −MN

is also integrable.


