Solution (\#1277) Let f, g be integrable functions on $[a, b]$. Say $m \leqslant f(x) \leqslant M$ and $g(x)>0$ for all x. By \#1272 we know that $f g$ is integrable and as $g(x)>0$ for each x we have

$$
m g(x) \leqslant f(x) g(x) \leqslant M g(x)
$$

for all x. Hence by Proposition 5.12(b) we have

$$
m \int_{a}^{b} g(x) \mathrm{d} x \leqslant \int_{a}^{b} f(x) g(x) \mathrm{d} x \leqslant M \int_{a}^{b} g(x) \mathrm{d} x
$$

However these inequalities need not hold if $g(x)$ is not positive on the whole interval. For example, if

$$
a=-1, \quad b=1, \quad f(x)=x \quad g(x)=x
$$

then

$$
\int_{a}^{b} g(x) \mathrm{d} x=\int_{-1}^{1} x \mathrm{~d} x=0, \quad \int_{a}^{b} f(x) g(x) \mathrm{d} x=\int_{-1}^{1} x^{2} \mathrm{~d} x=\frac{2}{3}
$$

and

$$
0 \leqslant \frac{2}{3} \leqslant 0
$$

is untrue, whatever our choices for m and M.

