
Solution (#1280) Let f, g be increasing, positive integrable functions on [a, b] . It follows then that

(f(x)− f(y))(g(x)− g(y)) � 0 for all x, y in [a, b] ,

as the product involves two non-negative numbers when x � y and two non-positive ones when x < y. So
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which rearranges to the desired inequality
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or equivalently that
(the mean of f)× (the mean of g) � (the mean of fg)

when f and g are increasing. This therefore is a continuous version of Chebyshev’s sum inequality which appeared in
#430.


