Solution (#1291) We will define two functions g(x) and h(x) such that

$$\lim_{R \to \infty} \int_{-R}^{R} g(x) \, \mathrm{d}x = \lim_{R \to \infty} \int_{-R}^{R} h(x) \, \mathrm{d}x = 1.$$

That the two functions are both integrable relies on the convergence of the series

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1.$$

Firstly we define g(x) for $x \ge 0$ to equal

$$\frac{1}{4}$$
 on [0,1), $\frac{1}{8}$ on [1,2), $\frac{1}{16}$ on [2,3), $\frac{1}{32}$ on [3,4),...

and so on. We then extend g(x) to the negative real line by requiring g(x) to be even. Note that

$$\lim_{R \to \infty} \int_{-R}^{R} g(x) \, \mathrm{d}x = 2 \lim_{R \to \infty} \int_{0}^{R} g(x) \, \mathrm{d}x = 2 \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \right) = 1.$$

Note that g(x) > 0 for all x. We then define h(x) to equal

1 on
$$\left(0,\frac{1}{2}\right)$$
, 2 on $\left(1,1\frac{1}{8}\right)$, 4 on $\left(2,2\frac{1}{32}\right)$, 8 on $\left(3,3\frac{1}{128}\right)$,...

and so on, and otherwise to equal 0. Note that $h(x) \ge 0$ for all x and that

$$\lim_{R \to \infty} \int_{-R}^{R} h(x) \, \mathrm{d}x = 1 \times \frac{1}{2} + 2 \times \frac{1}{8} + 4 \times \frac{1}{32} + \cdots$$
$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 1.$$

Note in particular that h(x) is unbounded having each of $1, 2, 4, 8, \ldots$ in its range.

We then have that f(x) = g(x) + h(x) > 0 for all x, that f(x) is unbounded and

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \, \mathrm{d}x = 2$$

exists.