
Solution (#1291) We will define two functions g(x) and h(x) such that

lim
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h(x) dx = 1.

That the two functions are both integrable relies on the convergence of the series
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Firstly we define g(x) for x � 0 to equal

1

4
on [0, 1),

1

8
on [1, 2),

1

16
on [2, 3),

1

32
on [3, 4), . . .

and so on. We then extend g(x) to the negative real line by requiring g(x) to be even. Note that
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Note that g(x) > 0 for all x.
We then define h(x) to equal
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and so on, and otherwise to equal 0. Note that h(x) � 0 for all x and that
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Note in particular that h(x) is unbounded having each of 1, 2, 4, 8, . . . in its range.
We then have that f(x) = g(x) + h(x) > 0 for all x, that f(x) is unbounded and

lim
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exists.


