Solution (#1291) We will define two functions g(z) and h(z) such that
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lim g(z)dz = lim h(z)dz = 1.
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That the two functions are both integrable relies on the convergence of the series
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Firstly we define g(z) for « > 0 to equal
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7 [0,1), g on [1,2), 6 o0 [2,3), 33 o0 [3,4),...
and so on. We then extend g(z) to the negative real line by requiring g(z) to be even. Note that
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Note that g(z) > 0 for all x.
We then define h(z) to equal

1 1 1 1
1 on <0,5>, 2 on (1,1§>, 4 on <2,2§>, 8 on (3’3@)"”'

and so on, and otherwise to equal 0. Note that h(xz) > 0 for all z and that
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Note in particular that h(x) is unbounded having each of 1,2,4,8, ... in its range.
We then have that f(z) = g(x) + h(z) > 0 for all z, that f(x) is unbounded and
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exists.



