Solution (\#1301) Say that $y(x)$ is a differentiable function on \mathbb{R} satisfying

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y, \quad y(0)=1
$$

If we set $z(x)=y(x) e^{-x}$ then by the product rule

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x} e^{-x}-y e^{-x}=y e^{-x}-y e^{-x}=0 .
$$

It therefore follows that z is constant; as $z(0)=y(0) e^{-0}=1$ then that constant is 1 and we have

$$
y(x) e^{-x}=1 \quad \text { for all } x .
$$

Hence

$$
y(x)=e^{x} \quad \text { for all } x
$$

