Solution (\#1406) Recall that

$$
B\left(\frac{3}{2}, \frac{3}{2}\right)=\int_{0}^{1} \sqrt{x(1-x)} \mathrm{d} x .
$$

Note that $x=\frac{1}{2}(1-\sin \theta)$ is decreasing on $-\pi / 2 \leqslant \theta \leqslant \pi / 2$. We have

$$
\mathrm{d} x=-\frac{1}{2} \cos \theta \mathrm{~d} \theta
$$

so that the above integral becomes

$$
\begin{aligned}
& \int_{\pi / 2}^{-\pi / 2} \sqrt{\left(\frac{1-\sin \theta}{2}\right)\left(\frac{1+\sin \theta}{2}\right)}\left(-\frac{1}{2} \cos \theta \mathrm{~d} \theta\right) \\
= & \frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \sqrt{\cos ^{2} \theta} \cos \theta \mathrm{~d} \theta \\
= & \frac{1}{4} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta \mathrm{~d} \theta \\
= & \frac{1}{8} \int_{-\pi / 2}^{\pi / 2}(1+\cos 2 \theta) \mathrm{d} \theta \\
= & \frac{1}{8}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{-\pi / 2}^{\pi / 2} \\
= & \frac{\pi}{8} .
\end{aligned}
$$

