Solution (\#1477) Using $\cos 2 x=2 \cos ^{2} x-1$ we have

$$
\int_{0}^{\pi / 3} \sqrt{\cos x+\cos 2 x} \mathrm{~d} x=\int_{0}^{\pi / 3} \sqrt{\cos x+2 \cos ^{2} x-1} \mathrm{~d} x=\int_{0}^{\pi / 3} \sqrt{(\cos x+1)(2 \cos x-1)} \mathrm{d} x
$$

If we similarly use $\cos x=2 \cos ^{2}(x / 2)-1=1-2 \sin ^{2}(x / 2)$ then the above integral becomes

$$
\int_{0}^{\pi / 3} \sqrt{2 \cos ^{2}(x / 2)\left(1-4 \sin ^{2}(x / 2)\right.} \mathrm{d} x=\sqrt{2} \int_{0}^{\pi / 3} \sqrt{1-4 \sin ^{2}(x / 2)} \cos (x / 2) \mathrm{d} x .
$$

Now if we set $u=\sin (x / 2)$ we find

$$
\sqrt{2} \int_{0}^{\pi / 3} \sqrt{1-4 \sin ^{2}(x / 2)} \cos (x / 2) \mathrm{d} x=\sqrt{2} \int_{0}^{1 / 2} \sqrt{1-4 u^{2}} 2 \mathrm{~d} u
$$

Finally setting $u=\frac{1}{2} \sin t$ we arrive at

$$
\begin{aligned}
2 \sqrt{2} \int_{0}^{1 / 2} \sqrt{1-4 u^{2}} \mathrm{~d} u & =2 \sqrt{2} \int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} t} \frac{1}{2} \cos t \mathrm{~d} t \\
& =\sqrt{2} \int_{0}^{\pi / 2} \cos ^{2} t \mathrm{~d} t \\
& =\frac{1}{\sqrt{2}} \int_{0}^{\pi / 2}(1+\cos 2 t) \mathrm{d} t \\
& =\left[\frac{t}{\sqrt{2}}+\frac{\sin 2 t}{2 \sqrt{2}}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{2 \sqrt{2}}
\end{aligned}
$$

