Solution (\#1499) Let n be a natural number. Define

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \frac{x^{n}}{\sqrt{x-x^{2}}} \mathrm{~d} x \\
& =\int_{0}^{1} x^{n-1 / 2}(1-x)^{-1 / 2} \mathrm{~d} x \\
& =B(n+1 / 2,1 / 2) \\
& =\frac{\Gamma(n+1 / 2) \Gamma(1 / 2)}{\Gamma(n+1)} \quad \text { by } \# 1410 .
\end{aligned}
$$

Now $\Gamma(1 / 2)=\sqrt{\pi}$ by $\# 1401$ and so by $\# 1360$

$$
\begin{aligned}
\Gamma\left(n+\frac{1}{2}\right) & =\left(n-\frac{1}{2}\right) \Gamma\left(n-\frac{1}{2}\right)=\cdots \\
& =\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right) \\
& =\frac{(2 n-1)(2 n-3) \times \cdots \times 1}{2^{n}} \sqrt{\pi} \\
& =\frac{(2 n)!}{(2 n)(2 n-2) \times \cdots \times 2} \frac{\sqrt{\pi}}{2^{n}} \\
& =\frac{(2 n)!}{2^{n} n!} \frac{\sqrt{\pi}}{2^{n}} .
\end{aligned}
$$

Hence

$$
I_{n}=\left(\frac{(2 n)!}{2^{n} n!} \frac{\sqrt{\pi}}{2^{n}}\right) \frac{\sqrt{\pi}}{n!}=\binom{2 n}{n} \frac{\pi}{2^{2 n}}
$$

