Solution (\#1520) Let $f_{X}(x)$ be the pdf of a continuous random variable. The median of (i) $(b-a)^{-1} \mathbf{1}_{(a, b)}(x)$ is

As

$$
m=\frac{a+b}{2} .
$$

$$
\int_{a}^{(a+b) / 2} \frac{\mathrm{~d} x}{b-a}=\frac{1}{2} .
$$

(ii) To find the median of the exponential we need

$$
\int_{0}^{m} \lambda e^{-\lambda x} \mathrm{~d} x=1-e^{-\lambda m}=\frac{1}{2}
$$

and so

$$
m=\frac{\ln 2}{\lambda}
$$

(iii) The median of the normal distribution with parameters μ and σ^{2} is again μ (the same as the mean) as

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\mu} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\
= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{0} \exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right) \mathrm{d} u \quad[u=x-\mu] \\
= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{0} \exp \left(-v^{2}\right) \sqrt{2} \sigma \mathrm{~d} v \\
= & {[u=\sqrt{2} \sigma v] } \\
=\frac{\sqrt{2} \sigma}{\sqrt{2 \pi \sigma^{2}}} \frac{\sqrt{\pi}}{2}=\frac{1}{2} . &
\end{aligned}
$$

(iv) The Cauchy distribution has median $m=0$ as

$$
\int_{-\infty}^{0} \frac{\mathrm{~d} x}{\pi\left(1+x^{2}\right)}=\frac{1}{2}
$$

