
Solution (#1527) From #469(v) we know that
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If 0 < m � n then by IBP we have
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= 2mHm−1 ·Hn−1.
So if m �= n then we have

2nHm−1 ·Hn−1 = Hm ·Hn = 2mHm−1 ·Hn−1
and so Hm ·Hn = 0. If we have m = n then

�Hn�2 = 2n |Hn−1|2 = 22n(n− 1) |Hn−2|2 = 2nn! |H0|2 .
Finally for 0 = m < n we have
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and when m = n = 0 we have
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Thus the Hermite polynomials are orthogonal with respect to the above inner product, but are not orthonormal
and in fact

�Hn� = 2n/2
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n!π1/4.


