Solution (\#1533) Let C be a curve parametrized separately as

$$
\mathbf{r}(t) \quad a \leqslant t \leqslant b ; \quad \mathbf{s}(u) \quad \alpha \leqslant u \leqslant \beta
$$

with the parametrizations connected by

$$
\mathbf{r}(t)=\mathbf{s}(f(t)), \quad f(a)=\alpha, \quad f(b)=\beta
$$

and then by the chain rule

$$
\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\frac{\mathrm{d} \mathbf{s}}{\mathrm{~d} t} f^{\prime}(t)
$$

Then using the definition of arc length based on the \mathbf{r} parametrization we obtain

$$
\int_{t=a}^{t=b} \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

We now make the substitution $u=f(t)$ and the above becomes

$$
\begin{aligned}
& \int_{u=\alpha}^{u=\beta} \sqrt{\left[\left(\frac{\mathrm{d} x}{\mathrm{~d} u}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} u}\right)^{2}\right]\left(\frac{\mathrm{d} u}{\mathrm{~d} t}\right)^{2}} \frac{\mathrm{~d} u}{f^{\prime}(t)} \\
= & \int_{u=\alpha}^{u=\beta} \sqrt{\left[\left(\frac{\mathrm{d} x}{\mathrm{~d} u}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} u}\right)^{2}\right]\left(f^{\prime}(t)\right)^{2}} \frac{\mathrm{~d} u}{f^{\prime}(t)} \\
= & \int_{u=\alpha}^{u=\beta} \sqrt{\left[\left(\frac{\mathrm{d} x}{\mathrm{~d} u}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} u}\right)^{2}\right]} \mathrm{d} u
\end{aligned}
$$

as $f^{\prime}(t) \geqslant 0$ for all t because f is increasing. This last integral is the arc length when calculated using the \mathbf{s} parametrization and so arc length is independent of the choice of parametrization.

