
Solution (#1535) In a similar manner to the cylinder in #1534 we can wrap the plane onto the cone in a way that
preserves lengths; this is identical to how one might use a sector of paper to make a conical hat or drinking cup.
Explicitly this parametrization of the cone is
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Note that a curve (r(t) cos θ(t), r(t) sin θ(t)) in the plane has length
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The corresponding curve on the cone has length
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which is the same as that of the original curve.
(i) Note that (1, 0, 1) and (0, 1, 1) on the cone correspond to (r, θ) =
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(ii) Note that (1, 0, 1) and (0, 2, 2) on the cone correspond to (r, θ) =
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apart in the plane and so the same distance apart on the cone.
(iii) As (0, 2, 2) and (1, 0,−1) lie in two different halves of the cone, any curve between them must pass through

(0, 0, 0) . The shortest distance from (0, 2, 2) to (0, 0, 0) within the cone is the straight line connecting them which has
length 2
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