Solution (#1542) (i) An upside-down cycloid has parametrization
z(u) =u — sinu, and y (u) = cosu for 0 <u <.

A smooth wire in the shape of this cycloid is fashioned, and a particle of mass m is released from the point (0,1).
From conservation of energy we know that
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From the initial starting position, with the particle being at rest at (0,1) we know that F = mg.

By the chain rule we have
dz =(1 fcosu)du dy _ fsinu%
dt dt’ dt dt

and so we have
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which rearranges to (du/dt)* = g. So du/dt = /9 and hence u = \/gt. As u = 7 at the bottom of the cycloid then
the time taken is 7/,/g.
(ii) Arguing similarly when the particle starts at rest from (x(ug), y(ug)) we have
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and the time taken to reach the bottom equals
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In a similar fashion to #1552 we now make the substitution

which rearranges to

u Uug
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so that % sin § du = cos 5* sin # d. Then we have
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(iii) Say now that the particle travels down a smooth linear wire from (0,1) to (m,0). We can parametrize this as

x (u) = u, and y(u):lf% for 0 <u < .

By conservation of energy we again have
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This is a separable DE and we find that the time taken equals
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so that

which rearranges to

= =7
3 2g
Now this time 7" is greater than the previous time T as 72 +1 > 9 and so
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