Solution (\#1542) (i) An upside-down cycloid has parametrization

$$
x(u)=u-\sin u, \quad \text { and } \quad y(u)=\cos u \quad \text { for } 0 \leqslant u \leqslant \pi
$$

A smooth wire in the shape of this cycloid is fashioned, and a particle of mass m is released from the point $(0,1)$. From conservation of energy we know that

$$
\frac{1}{2} m\left(\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}\right)+m g y=E=\text { constant. }
$$

From the initial starting position, with the particle being at rest at $(0,1)$ we know that $E=m g$.
By the chain rule we have

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=(1-\cos u) \frac{\mathrm{d} u}{\mathrm{~d} t}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\sin u \frac{\mathrm{~d} u}{\mathrm{~d} t}
$$

and so we have

$$
\frac{m}{2}\left((1-\cos u)^{2}+\sin ^{2} u\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} t}\right)^{2}+m g \cos u=m g
$$

which rearranges to $(\mathrm{d} u / \mathrm{d} t)^{2}=g$. So $\mathrm{d} u / \mathrm{d} t=\sqrt{g}$ and hence $u=\sqrt{g} t$. As $u=\pi$ at the bottom of the cycloid then the time taken is π / \sqrt{g}.
(ii) Arguing similarly when the particle starts at rest from $\left(x\left(u_{0}\right), y\left(u_{0}\right)\right)$ we have

$$
\frac{m}{2}\left((1-\cos u)^{2}+\sin ^{2} u\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} t}\right)^{2}+m g \cos u=m g \cos u_{0}
$$

which rearranges to

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\sqrt{g} \sqrt{\frac{\cos u_{0}-\cos u}{1-\cos u}}
$$

and the time taken to reach the bottom equals

$$
T=\frac{1}{\sqrt{g}} \int_{u=u_{0}}^{u=\pi} \sqrt{\frac{1-\cos u}{\cos u_{0}-\cos u}} \mathrm{~d} u=\frac{1}{\sqrt{g}} \int_{u=u_{0}}^{u=\pi} \frac{\sin \frac{u}{2}}{\sqrt{\cos ^{2} \frac{u_{0}}{2}-\cos ^{2} \frac{u}{2}}} \mathrm{~d} u
$$

In a similar fashion to $\# 1552$ we now make the substitution

$$
\cos \frac{u}{2}=\cos \frac{u_{0}}{2} \cos \theta
$$

so that $\frac{1}{2} \sin \frac{u}{2} \mathrm{~d} u=\cos \frac{u_{0}}{2} \sin \theta \mathrm{~d} \theta$. Then we have

$$
T=\frac{1}{\sqrt{g}} \int_{u=0}^{u=\pi / 2} \frac{2 \cos \frac{u_{0}}{2} \sin \theta \mathrm{~d} \theta}{\sqrt{\cos ^{2} \frac{u_{0}}{2}-\cos ^{2} \frac{u_{0}}{2} \cos ^{2} \theta}}=\frac{1}{\sqrt{g}} \int_{u=0}^{u=\pi / 2} \frac{2 \sin \theta \mathrm{~d} \theta}{\sqrt{1-\cos ^{2} \theta}}=\frac{1}{\sqrt{g}} \int_{u=0}^{u=\pi / 2} 2 \mathrm{~d} \theta=\frac{\pi}{\sqrt{g}}
$$

(iii) Say now that the particle travels down a smooth linear wire from $(0,1)$ to $(\pi, 0)$. We can parametrize this as

$$
x(u)=u, \quad \text { and } \quad y(u)=1-\frac{u}{\pi} \quad \text { for } 0 \leqslant u \leqslant \pi .
$$

By conservation of energy we again have

$$
\frac{1}{2} m\left(\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}\right)+m g y=m g
$$

so that

$$
\frac{1}{2} m\left(1+\frac{1}{\pi^{2}}\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} t}\right)^{2}+m g\left(1-\frac{u}{\pi}\right)=m g
$$

which rearranges to

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=\sqrt{\frac{2 g \pi u}{\pi^{2}+1}} .
$$

This is a separable DE and we find that the time taken equals

$$
T^{\prime}=\sqrt{\frac{\pi^{2}+1}{2 g \pi}} \int_{u=0}^{u=\pi} \sqrt{u} \mathrm{~d} u=\sqrt{\frac{\pi^{2}+1}{2 g \pi}}\left[\frac{2 u^{3 / 2}}{3}\right]_{0}^{\pi}=\frac{2}{3} \pi \sqrt{\frac{\pi^{2}+1}{2 g}}
$$

Now this time T^{\prime} is greater than the previous time T as $\pi^{2}+1>9$ and so

$$
T^{\prime}=\frac{2}{3} \pi \sqrt{\frac{\pi^{2}+1}{2 g}}>\frac{2}{3} \pi \sqrt{\frac{9}{2 g}}=\frac{\sqrt{2} \pi}{\sqrt{g}}>\frac{\pi}{\sqrt{g}}=T
$$

