Solution (\#1551) For $a, b>0$ define

$$
I(a, b)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}}
$$

(i) If $a \geqslant b$ then

$$
\begin{aligned}
I(a, b) & =\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{a^{2}\left(1-\sin ^{2} x\right)+b^{2} \sin ^{2} x}} \\
& =\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{a^{2}-\left(a^{2}-b^{2}\right) \sin ^{2} x}} \\
& =\frac{1}{a} \int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{1-\left(1-\frac{b^{2}}{a^{2}}\right) \sin ^{2} x}} \\
& =\frac{1}{a} K\left(\sqrt{1-\frac{b^{2}}{a^{2}}}\right)
\end{aligned}
$$

(ii) By making the substitution $t=\pi / 2-x$ we see

$$
I(a, b)=\int_{\pi / 2}^{0} \frac{-\mathrm{d} t}{\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}}=\int_{0}^{\pi / 2} \frac{\mathrm{~d} t}{\sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}}=I(b, a)
$$

Also for $c>0$ we have

$$
I(a, b)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{c^{2} a^{2} \cos ^{2} x+c^{2} b^{2} \sin ^{2} x}}=\frac{1}{c} \int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}}=\frac{I(a, b)}{c} .
$$

Finally we note

$$
I(a, a)=\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{a^{2} \cos ^{2} x+a^{2} \sin ^{2} x}}=\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{a}=\frac{\pi}{2 a}
$$

(iii) Without loss of generality assume that $a \geqslant b$ so that $(a+b) / 2 \geqslant \sqrt{a b}$ as well, by the AM-GM inequality. Then by (i) we know

$$
I(a, b)=\frac{1}{a} K\left(\sqrt{1-\frac{b^{2}}{a^{2}}}\right)
$$

We similarly have

$$
I\left(\frac{a+b}{2}, \sqrt{a b}\right)=\frac{2}{a+b} K\left(\sqrt{1-\frac{a b}{\left(\frac{a+b}{2}\right)^{2}}}\right)=\frac{2}{a+b} K\left(\frac{a-b}{a+b}\right) .
$$

So we require that

$$
K\left(\sqrt{1-\frac{b^{2}}{a^{2}}}\right)=\frac{2 a}{a+b} K\left(\frac{a-b}{a+b}\right)
$$

follows from the identity in \#1550

$$
K\left(\frac{2 \sqrt{k}}{1+k}\right)=(1+k) K(k)
$$

when we set $k=(a-b) /(a+b)$.
(iv) Recall that given $a \geqslant b>0$ we define sequences

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad a_{1}=a, b_{1}=b
$$

with the sequence a_{n} converging down to $\operatorname{agm}(a, b)$ and b_{n} converging up to agm (a, b). So by (iii) we have

$$
I(a, b)=I\left(a_{1}, b_{1}\right)=I\left(a_{2}, b_{2}\right)=\cdots=I\left(a_{n}, b_{n}\right)
$$

for each n. If we take the limit as $n \rightarrow \infty$ and use part (ii) we see

$$
I(a, b)=I(\operatorname{agm}(a, b), \operatorname{agm}(a, b))=\frac{\pi}{2 \operatorname{agm}(a, b)}
$$

and hence $\operatorname{agm}(a, b) I(a, b)=\pi / 2$.

