Solution (#1573) The moment generating function Mx (t) of a continuous random variable with pdf fx equals

Mx(t)=F (etX) = /OO e fx(z)dz.
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(i) uniform distribution on a < z < b: if t # 0 then
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At t = 0 this has a limit of 1 which agrees with the definition of M (0) in any case.
(ii) exponential distribution with parameter A > 0: for ¢ < A we have
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(iii) gamma distribution with parameters a > 0, A > 0: for ¢ < A we have
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Note unsurprisingly that this agrees with (ii) when a = 1.
(iv) Cauchy distribution: we have
et dx
M(t) =

—oo T(1+2%)
If t > 0 then this integral does not converge on (0,00) and if ¢ < 0 the integral does not converge on (—o0,0). So the
moment generating function is only defined at ¢ = 0 where M (0) = 1.




