
Solution (#1573) The moment generating function MX(t) of a continuous random variable with pdf fX equals
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At t = 0 this has a limit of 1 which agrees with the definition of M(0) in any case.
(ii) exponential distribution with parameter λ > 0: for t < λ we have
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(iii) gamma distribution with parameters a > 0, λ > 0: for t < λ we have
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Note unsurprisingly that this agrees with (ii) when a = 1.
(iv) Cauchy distribution: we have
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If t > 0 then this integral does not converge on (0,∞) and if t < 0 the integral does not converge on (−∞, 0). So the
moment generating function is only defined at t = 0 where M(0) = 1.


