Solution (#1573) The moment generating function $M_X(t)$ of a continuous random variable with pdf f_X equals

$$M_X(t) = E\left(e^{tX}\right) = \int_{-\infty}^{\infty} e^{tx} f_X(x) \,\mathrm{d}x.$$

(i) uniform distribution on $a \leq x \leq b$: if $t \neq 0$ then

$$M(t) = \frac{1}{b-a} \int_{a}^{b} e^{tx} \, \mathrm{d}x = \frac{1}{b-a} \left[\frac{e^{tx}}{t} \right]_{a}^{b} = \frac{e^{bt} - e^{at}}{(b-a)t}.$$

At t = 0 this has a limit of 1 which agrees with the definition of M(0) in any case.

(ii) exponential distribution with parameter $\lambda > 0$: for $t < \lambda$ we have

$$M(t) = \int_0^\infty e^{tx} \lambda e^{-\lambda x} \, \mathrm{d}x = \lambda \int_0^\infty e^{-(\lambda - t)x} \, \mathrm{d}x = \frac{\lambda}{\lambda - t}.$$

(iii) gamma distribution with parameters $a > 0, \lambda > 0$: for $t < \lambda$ we have

$$M(t) = \int_{0}^{\infty} e^{tx} \frac{1}{\Gamma(a)} \lambda^{a} x^{a-1} e^{-\lambda x} dx$$

$$= \frac{\lambda^{a}}{\Gamma(a)} \int_{0}^{\infty} x^{a-1} e^{-(\lambda-t)x} dx$$

$$= \frac{\lambda^{a}}{\Gamma(a)} \int_{0}^{\infty} \left(\frac{u}{\lambda-t}\right)^{a-1} e^{-u} \frac{du}{\lambda-t} \qquad [u = (\lambda-t)x]$$

$$= \frac{\lambda^{a}}{\Gamma(a)} \times \frac{\Gamma(a)}{(\lambda-t)^{a}}$$

$$= \left(\frac{\lambda}{\lambda-t}\right)^{a}.$$

Note unsurprisingly that this agrees with (ii) when a = 1.

(iv) Cauchy distribution: we have

$$M(t) = \int_{-\infty}^{\infty} \frac{e^{tx} \,\mathrm{d}x}{\pi (1+x^2)}$$

If t > 0 then this integral does not converge on $(0, \infty)$ and if t < 0 the integral does not converge on $(-\infty, 0)$. So the moment generating function is only defined at t = 0 where M(0) = 1.