Solution (\#491) Let $\mathbf{v}=(1,0,2), \mathbf{w}=(0,3,1)$ in \mathbb{R}^{3}. Suppose that $(x, y, z)=\alpha \mathbf{v}+\beta \mathbf{w}$ for some real numbers α, β. Then this gives us three scalar equations

$$
x=\alpha, \quad y=3 \beta, \quad z=2 \alpha+\beta .
$$

Hence, eliminating α and β, we have

$$
z=2 x+y / 3 \quad \text { which rearranges to } \quad 6 x+y-3 z=0 .
$$

Conversely if $6 x+y-3 z=0$, then

$$
(x, y, z)=(x, 3 z-6 x, z)=x(1,0,2)+(z-2 x)(0,3,1)
$$

which is the required result with $\alpha=x$ and $\beta=z-2 x$.

