Solution (#491) Let $\mathbf{v} = (1, 0, 2)$, $\mathbf{w} = (0, 3, 1)$ in \mathbb{R}^3 . Suppose that $(x, y, z) = \alpha \mathbf{v} + \beta \mathbf{w}$ for some real numbers α, β . Then this gives us three scalar equations

$$x = \alpha, \qquad y = 3\beta, \qquad z = 2\alpha + \beta.$$

Hence, eliminating α and β , we have

z = 2x + y/3 which rearranges to 6x + y - 3z = 0. Conversely if 6x + y - 3z = 0, then

$$(x,y,z)=(x,3z-6x,z)=x\left(1,0,2\right)+\left(z-2x\right)(0,3,1)$$
 which is the required result with
 $\alpha=x$ and $\beta=z-2x.$