Solution (\#495) Let S be a non-empty subset of \mathbb{R}^{2} which is closed under addition and scalar multiplication. It is hopefully clear that each of $\{\mathbf{0}\}$, a line through the origin and \mathbb{R}^{2} are closed under addition and scalar multiplication.

As S is non-empty then it contains at least one vector \mathbf{u} and as it is closed under scalar multiplication then it contains $\mathbf{0}=\mathbf{0} \mathbf{u}$. If $S=\{\mathbf{0}\}$ then we are done.

Otherwise S contains a non-zero vector \mathbf{v}. Again as S is closed under scalar multiplication then S contains each vector $\lambda \mathbf{v}$ where λ is a real number. The vectors $\lambda \mathbf{v}$ comprise a line through the origin and if S is this line then we are again done.

Otherwise S contains a vector \mathbf{w} which is not a multiple of \mathbf{v}. All the vectors

$$
\lambda \mathbf{v}+\mu \mathbf{w}
$$

are in S as it is closed under addition and scalar multiplication.
\mathbf{w} not being a multiple of \mathbf{v} is equivalent to the vectors \mathbf{v} and \mathbf{w} being linearly independent. One can show that for every real x, y there exist λ, μ such that

$$
\lambda \mathbf{v}+\mu \mathbf{w}=(x, y)
$$

- details of this appear around (3.29). It follows that $S=\mathbb{R}^{2}$.

In a similar fashion the subsets of \mathbb{R}^{3} which are closed under addition and scalar multiplication and are

$$
\{\mathbf{0}\}, \quad \text { lines through the origin, } \quad \text { planes containing the origin, } \quad \mathbb{R}^{3} .
$$

