Solution (#495) Let S be a non-empty subset of \mathbb{R}^2 which is closed under addition and scalar multiplication. It is hopefully clear that each of $\{0\}$, a line through the origin and \mathbb{R}^2 are closed under addition and scalar multiplication.

As S is non-empty then it contains at least one vector **u** and as it is closed under scalar multiplication then it contains $\mathbf{0} = 0\mathbf{u}$. If $S = \{\mathbf{0}\}$ then we are done.

Otherwise S contains a non-zero vector \mathbf{v} . Again as S is closed under scalar multiplication then S contains each vector $\lambda \mathbf{v}$ where λ is a real number. The vectors $\lambda \mathbf{v}$ comprise a line through the origin and if S is this line then we are again done.

Otherwise S contains a vector \mathbf{w} which is not a multiple of \mathbf{v} . All the vectors

$$\lambda \mathbf{v} + \mu \mathbf{w}$$

are in S as it is closed under addition and scalar multiplication.

w not being a multiple of **v** is equivalent to the vectors **v** and **w** being linearly independent. One can show that for every real x, y there exist λ, μ such that

$$\lambda \mathbf{v} + \mu \mathbf{w} = (x, y)$$

– details of this appear around (3.29). It follows that $S = \mathbb{R}^2$.

In a similar fashion the subsets of \mathbb{R}^3 which are closed under addition and scalar multiplication and are

 $\{\mathbf{0}\},$ lines through the origin, planes containing the origin, \mathbb{R}^3 .