Solution (#507) If $\mathbf{u} = (x, y, z)$ is a unit vector in \mathbb{R}^3 then $-1 \leq z \leq 1$ and so there is a unique θ in the range $0 \leq \theta \leq \pi$ such that $z = \cos \theta$. For $\sin \theta \neq 0$ we then have

$$\left(\frac{x}{\sin\theta}\right)^2 + \left(\frac{y}{\sin\theta}\right)^2 = 1$$

and so there is a unique ϕ in the range $0\leqslant\phi<2\pi$ such that

$$(x/\sin\theta, y/\sin\theta) = (\cos\phi, \sin\phi).$$

The case of $\sin \theta = 0$ needs treating separately.