Solution (\#516) Let $P=(1,-2,3)$ and $Q=(-3,0,2)$. Points on the line $P Q$ are of the form

$$
R_{\lambda}=(1,-2,3)+\lambda((-3,0,2)-(1,-2,3))=(1-\lambda)(1,-2,3)+\lambda(-3,0,2)
$$

Note that $R_{0}=P$ and $R_{1}=Q$. Also note

$$
\left|R_{\lambda} P\right|=|\lambda(-4,2,-1)|=|\lambda| \sqrt{4^{2}+2^{2}+1^{2}}=|\lambda| \sqrt{21}
$$

and

$$
\left|R_{\lambda} Q\right|=|(\lambda-1)(4,2,-1)|=|\lambda-1| \sqrt{21}
$$

The desired point R between P and Q has $0<\lambda<1$ and satisfies

$$
\frac{2}{3}=\frac{\left|R_{\lambda} P\right|}{\left|R_{\lambda} Q\right|}=\frac{|\lambda|}{|\lambda-1|}=\frac{\lambda}{1-\lambda},
$$

and hence $\lambda=2 / 5$. We then have

$$
R=R_{2 / 5}=\frac{3}{5}(1,-2,3)+\frac{2}{5}(-3,0,2)=\frac{1}{5}(-3,-6,13) .
$$

There is a second point S on the line $P Q$ which satisfies $|P S|=\frac{2}{3}|Q S|$. For this we need to find the second solution of

$$
\frac{2}{3}=\frac{|\lambda|}{|\lambda-1|}
$$

If $\lambda>1$ the equation simplifies to

$$
\frac{2}{3}=\frac{\lambda}{\lambda-1} \Longrightarrow 2 \lambda-2=3 \lambda \Longrightarrow \lambda=-2
$$

which is not in the range $\lambda>1$. If $\lambda<0$ the equation simplifies to

$$
\frac{2}{3}=\frac{-\lambda}{1-\lambda} \Longrightarrow 2-2 \lambda=-3 \lambda \Longrightarrow \lambda=-2
$$

Hence we have

$$
S=R_{-2}=3(1,-2,3)-2(-3,0,2)=(9,-6,5) .
$$

