Solution (#530) The normal direction to the plane $\mathbf{r} \cdot \mathbf{n} = c$ is parallel to \mathbf{n} . The shortest distance from \mathbf{p} to the plane is measured along the normal – so the nearest point on the plane to \mathbf{p} is the form $\mathbf{p} + \lambda_0 \mathbf{n}$ for some λ_0 . This value is specified by the equation

 $(\mathbf{p} + \lambda_0 \mathbf{n}) \cdot \mathbf{n} = c \Longrightarrow \lambda_0 = \frac{c - \mathbf{p} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}}.$ $|\lambda_0 \mathbf{n}| = \left| \frac{c - \mathbf{p} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \right| |\mathbf{n}| = \frac{|c - \mathbf{p} \cdot \mathbf{n}|}{|\mathbf{n}|}.$

The distance from $\mathbf{p} + \lambda_0 \mathbf{n}$ to \mathbf{p} is