Solution (#540) Let \mathbf{n} be a unit vector and let P denote reflection orthogonal projection on to the plane $\mathbf{r} \cdot \mathbf{n} = 0$. The orthogonal projection $P(\mathbf{v})$ of \mathbf{v} is the unique point in the plane such that the plane's normal at $P(\mathbf{v})$ passes through \mathbf{v} . So $P(\mathbf{v})$ is uniquely specified by

$$P(\mathbf{v}) \cdot \mathbf{n} = 0$$
 and $P(\mathbf{v}) = \mathbf{v} + \lambda \mathbf{n}$ for some real number λ .

So we have

$$(\mathbf{v} + \lambda \mathbf{n}) \cdot \mathbf{n} = 0$$
 giving $\lambda = -\mathbf{v} \cdot \mathbf{n}$

and hence $P(\mathbf{v}) = \mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$. Further, as $\mathbf{n} \cdot \mathbf{n} = 1$,

$$P^{2}(\mathbf{v}) = P(\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n})$$

$$= (\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) - [(\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) \cdot \mathbf{n}]\mathbf{n}$$

$$= \mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} + (\mathbf{v} \cdot \mathbf{n})(\mathbf{n} \cdot \mathbf{n})\mathbf{n}$$

$$= \mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

$$= \mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} = P(\mathbf{v}).$$

Now let R denote reflection in the plane $\mathbf{r} \cdot \mathbf{n} = 0$. With P as above we note that $P(\mathbf{v})$ is the midpoint of $Q(\mathbf{v})$ and \mathbf{v} . Hence

$$P(\mathbf{v}) = \frac{Q(\mathbf{v}) + \mathbf{v}}{2}$$

which rearranges to

$$\begin{aligned} Q(\mathbf{v}) &= 2P(\mathbf{v}) - \mathbf{v} \\ &= 2(\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) - \mathbf{v} \\ &= \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n}. \end{aligned}$$

Note that

$$Q^{2}(\mathbf{v}) = Q(\mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n})$$

$$= \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n} - 2[(\mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n}) \cdot \mathbf{n}]\mathbf{n}$$

$$= \mathbf{v} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n} - 2(\mathbf{v} \cdot \mathbf{n})\mathbf{n} + 4(\mathbf{v} \cdot \mathbf{n})(\mathbf{n} \cdot \mathbf{n})\mathbf{n}$$

$$= \mathbf{v} - 4(\mathbf{v} \cdot \mathbf{n})\mathbf{n} + 4(\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

$$= \mathbf{v}.$$