Solution (\#582) Say $i \neq j$. Then

$$
\begin{aligned}
{[A+B]_{i j} } & =[A]_{i j}+[B]_{i j}=0 \quad \text { as } A \text { and } B \text { are diagonal. } \\
{[c A]_{i j} } & =c[A]_{i j} \quad \text { as } A \text { is diagonal. }
\end{aligned}
$$

As A and B are diagonal then

$$
[A]_{i j}=[A]_{i i} \delta_{i j}, \quad[B]_{i j}=[B]_{i i} \delta_{i j}
$$

Then

$$
\begin{aligned}
{[A B]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}=\sum_{k=1}^{n}[A]_{i i} \delta_{i k}[B]_{j j} \delta_{k j}=[A]_{i i}[B]_{j j} \delta_{i j} \\
{[B A]_{i j} } & =\sum_{k=1}^{n}[B]_{i k}[A]_{k j}=\sum_{k=1}^{n}[B]_{i i} \delta_{i k}[A]_{j j} \delta_{k j}=[B]_{i i}[A]_{j j} \delta_{i j}
\end{aligned}
$$

These expressions are zero unless $i=j$ when they are equal. So $A B$ is diagonal and $A B=B A$.
In amongst this formal notation something simple may have been lost, so it's worth remarking that the following has been shown: if

$$
A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad B=\operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

then

$$
\begin{aligned}
A+B & =\operatorname{diag}\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
c A & =\operatorname{diag}\left(c a_{1}, c a_{2}, \ldots, c a_{n}\right)
\end{aligned}
$$

and

$$
A B=\operatorname{diag}\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)=\operatorname{diag}\left(b_{1} a_{1}, b_{2} a_{2}, \ldots, b_{n} a_{n}\right)=B A
$$

