Solution (\#604) Show first that $a+d=0$ if

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Note $a^{2}+b c=0$ can be rewritten as

$$
a^{2}+\left(\frac{b+c}{2}\right)^{2}=\left(\frac{b-c}{2}\right)^{2}
$$

Square roots of 0_{22} have the form

$$
\left(\begin{array}{cc}
z \cos \alpha & z \sin \alpha+z \\
z \sin \alpha-z & -z \cos \alpha
\end{array}\right) .
$$

