Solution (\#638) Let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
3 & 4 \\
2 & 3
\end{array}\right) ; \quad \mathbf{x}=\binom{x}{y} ; \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

(i) We have

$$
\left(\begin{array}{ll}
1 & 1 \\
3 & 4 \\
2 & 3
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
x+y \\
3 x+4 y \\
2 x+3 y
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

if we substitute $x=-y$ into the second equation we get $y=0$ and so $x=0$ also.
(ii) Now

$$
\begin{aligned}
& B_{1} A=\left(\begin{array}{ccc}
8 & -5 & 4 \\
-6 & 4 & -3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 4 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
8-15+8 & 8-20+12 \\
-6+12-6 & -6+16-9
\end{array}\right)=I_{2} \\
& B_{2} A=\left(\begin{array}{ccc}
-4 & 7 & -8 \\
3 & -5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 4 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-4+21-16 & -4+28-24 \\
3-15+12 & 3-20+18
\end{array}\right)=I_{2} .
\end{aligned}
$$

(iii) Now consider the system

$$
\left(\begin{array}{ll}
1 & 1 \\
3 & 4 \\
2 & 3
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
x+y \\
3 x+4 y \\
2 x+3 y
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

From the first two equations we can deduce that

$$
x=4 b_{1}-b_{2}, \quad y=b_{2}-3 b_{1} .
$$

So there is clearly at most one solution and these values of x, y will satisfy the third equation if and only if

$$
2\left(4 b_{1}-b_{2}\right)+3\left(b_{2}-3 b_{1}\right)=b_{3} \Longleftrightarrow b_{1}+b_{3}=b_{2} .
$$

(iv) If $\mathbf{b}=(2,7,5)^{T}$ then this condition is met as $2+5=7$. We see from (iii) that our solution is $(x, y)=(1,1)$. Note also that

$$
\begin{aligned}
& B_{1} \mathbf{b}=\left(\begin{array}{ccc}
8 & -5 & 4 \\
-6 & 4 & -3
\end{array}\right)\left(\begin{array}{l}
2 \\
7 \\
5
\end{array}\right)=\binom{16-35+20}{-12+28-15}=\binom{1}{1} ; \\
& B_{2} \mathbf{b}=\left(\begin{array}{ccc}
-4 & 7 & -8 \\
3 & -5 & 6
\end{array}\right)\left(\begin{array}{l}
2 \\
7 \\
5
\end{array}\right)=\binom{-8+49-40}{6-35+30}=\binom{1}{1},
\end{aligned}
$$

though this should not be surprising as $A \mathbf{x}=\mathbf{b}$ implies $\mathbf{x}=I_{2} \mathbf{x}=B A \mathbf{x}=B \mathbf{b}$ for any left inverse of A.
(v) As x and y vary, the point $A \mathbf{x}$ ranges over all those \mathbf{b} that are consistent with $A \mathbf{x}=\mathbf{b}$, i.e. over the plane

$$
b_{1}+b_{3}=b_{2} .
$$

