Solution (\#642) (i) Say $A X=B$ where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)
$$

As A is invertible with

$$
A^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right)
$$

then

$$
X=A^{-1} B=\frac{1}{2}\left(\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & 2 \\
1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-10 & -6 \\
8 & 5
\end{array}\right)=\left(\begin{array}{cc}
-5 & -3 \\
4 & 2 \frac{1}{2}
\end{array}\right)
$$

(ii) Say now that $A X=B$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 2 \\
6 & 4
\end{array}\right)
$$

This time A is not invertible. If we write

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then the single matrix equation $A X=B$ is equivalent to the scalar equations

$$
a+c=3 ; \quad b+d=2 ; \quad 2 a+2 c=6 ; \quad 2 b+2 d=6 .
$$

Clearly the third and fourth equations follow from the first and second and so the general solution for X is

$$
X=\left(\begin{array}{cc}
a & b \\
3-a & 2-b
\end{array}\right)
$$

(iii) Say $A X=B$ where

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Again A is not invertible. If we write the entries for X as before we obtain the four equations

$$
a+2 c=1 ; \quad b+2 d=0 ; \quad 2 a+4 c=0 ; \quad 2 b+4 d=1
$$

Note that the third equation contradicts the first (as the fourth does the second) so there are no matrices X solving $A X=B$.

