Solution (\#711) Let A be an $m \times n$ matrix and E be an $m \times m$ elementary matrix. We shall show that a linear independency involving k rows of A corresponds to a linear independency of k rows of $E A$. Denote the rows of A as $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ and the rows of $E A$ as $\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}$. Say without loss of generality that the first k rows of A are linearly independent.
(i) Say that $E=S_{I J}$ with $I<J$. If $k<I$ or $J \leqslant k$ then the first k rows of $E A$ are the same as the first k rows of A (albeit possibly in a different order) and so are still linearly independent. If $I \leqslant k<J$ then the rows

$$
\mathbf{s}_{1}, \ldots, \mathbf{s}_{I-1}, \mathbf{s}_{I+1}, \ldots, \mathbf{s}_{k}, \mathbf{s}_{J}
$$

are the first k rows of A, in a different order, and so are linearly independent.
(ii) Say that $E=M_{I}(\lambda)$ where $\lambda \neq 0$. If $I>k$ then the first k rows of $E A$ are the same as the first k rows of A and so are still linearly independent. If $I \leqslant k$ then

$$
\begin{array}{r}
\alpha_{1} \mathbf{s}_{1}+\cdots+\alpha_{I-1} \mathbf{s}_{I-1}+\alpha_{I} \mathbf{s}_{I}+\alpha_{I+1} \mathbf{s}_{I+1}+\cdots+\alpha_{k} \mathbf{s}_{k}=\mathbf{0} \\
\Longleftrightarrow \quad \alpha_{1} \mathbf{r}_{1}+\cdots+\alpha_{I-1} \mathbf{r}_{I-1}+\alpha_{I} \lambda \mathbf{r}_{I}+\alpha_{I+1} \mathbf{r}_{I+1}+\cdots+\alpha_{k} \mathbf{r}_{k}=\mathbf{0} \\
\Longleftrightarrow \quad \alpha_{1}=\cdots=\alpha_{I-1}=\alpha_{I} \lambda=\alpha_{I+1}=\alpha_{k}=0 \\
\Longleftrightarrow \quad \alpha_{1}=\cdots=\alpha_{I-1}=\alpha_{I}=\alpha_{I+1}=\alpha_{k}=0
\end{array}
$$

So the first first k rows of $E A$ are again linearly independent.
(iii) Say that $E=A_{I J}(\lambda)$ where $\lambda \neq 0$. (Note there is nothing to prove if $\lambda=0$ as E is the identity matrix.). If $J>k$ then the first k rows of $E A$ are the same as the first k rows of A and so are still linearly independent. If $J \leqslant k$ and the first k rows of $E A$ are independent we are done; otherwise there is a non-trivial dependency in the rows $\mathbf{s}_{1}, \ldots, \mathbf{s}_{k}$ in which case we claim that $\mathbf{s}_{1}, \ldots, \mathbf{s}_{J-1}, \mathbf{s}_{J+1}, \ldots, \mathbf{s}_{k}, \mathbf{s}_{I}$ are independent.

This linear dependency is of the form

$$
c_{1} \mathbf{r}_{1}+\cdots+c_{J-1} \mathbf{r}_{J-1}+c_{J}\left(\mathbf{r}_{J}+\lambda \mathbf{r}_{I}\right)+c_{I+1} \mathbf{r}_{J+1}+\cdots+c_{k} \mathbf{r}_{k}=\mathbf{0} .
$$

It must be that $c_{J} \neq 0$ as $\mathbf{r}_{1}, \ldots, \mathbf{r}_{J-1}, \mathbf{r}_{J+1}, \ldots, \mathbf{r}_{k}$ are independent. So without loss of generality we can assume $c_{J}=-1$ so that

$$
\lambda \mathbf{r}_{I}=c_{1} \mathbf{r}_{1}+\cdots+c_{J-1} \mathbf{r}_{J-1}-\mathbf{r}_{J}+c_{I+1} \mathbf{r}_{J+1}+\cdots+c_{k} \mathbf{r}_{k}=\mathbf{0} .
$$

Say now that

$$
\alpha_{1} \mathbf{s}_{1}+\cdots+\alpha_{J-1} \mathbf{s}_{J-1}+\alpha_{J+1} \mathbf{s}_{J+1}+\cdots+\alpha_{k} \mathbf{s}_{k}+\alpha_{I} \mathbf{s}_{I}=\mathbf{0}
$$

or equivalently

$$
\alpha_{1} \mathbf{r}_{1}+\cdots+\alpha_{J-1} \mathbf{r}_{J-1}+\alpha_{J+1} \mathbf{r}_{J+1}+\cdots+\alpha_{k} \mathbf{r}_{k}+\alpha_{I} \mathbf{r}_{I}=\mathbf{0}
$$

as the ERO changed none of these rows. By the dependency above we have

$$
\alpha_{1} \mathbf{r}_{1}+\cdots+\alpha_{J-1} \mathbf{r}_{J-1}+\alpha_{J+1} \mathbf{r}_{J+1}+\cdots+\alpha_{k} \mathbf{r}_{k}+\frac{\alpha_{I}}{\lambda}\left(c_{1} \mathbf{r}_{1}+\cdots+c_{J-1} \mathbf{r}_{J-1}-\mathbf{r}_{J}+c_{I+1} \mathbf{r}_{J+1}+\cdots+c_{k} \mathbf{r}_{k}\right)=\mathbf{0}
$$

Rearranging this means that

$$
\left(\alpha_{1}+\frac{\alpha_{I} c_{1}}{\lambda}\right) \mathbf{r}_{1}+\cdots+\left(\alpha_{J-1}+\frac{\alpha_{I} c_{J-1}}{\lambda}\right) \mathbf{r}_{J-1}-\frac{\alpha_{I}}{\lambda} \mathbf{r}_{J}+\left(\alpha_{J+1}+\frac{\alpha_{I} c_{J+1}}{\lambda}\right) \mathbf{r}_{J+1}+\cdots+\left(\alpha_{k}+\frac{\alpha_{k} c_{k}}{\lambda}\right) \mathbf{r}_{k}=\mathbf{0}
$$

As the vectors $\mathbf{r}_{1}, \ldots, \mathbf{r}_{k}$ are independent then

$$
\alpha_{1}+\frac{\alpha_{I} c_{1}}{\lambda}=\cdots=\alpha_{J-1}+\frac{\alpha_{I} c_{J-1}}{\lambda}=-\frac{\alpha_{I}}{\lambda}=\alpha_{J+1}+\frac{\alpha_{I} c_{J+1}}{\lambda}=\cdots=\alpha_{k}+\frac{\alpha_{k} c_{k}}{\lambda}=0
$$

from which it follows that

$$
\alpha_{1}=\cdots=\alpha_{k}=0
$$

and that $\mathbf{s}_{1}, \ldots, \mathbf{s}_{J-1}, \mathbf{s}_{J+1}, \ldots, \mathbf{s}_{k}, \mathbf{s}_{I}$ are independent.
So in each case we have shown that if A has k independent rows then $E A$ has k independent rows. Recall also that the inverse of an elementary matrix is an elementary matrix.

Now the first r rows of $\operatorname{RRE}(A)$ are independent and so there are r independent rows in A as a series of elementary matrices can transform $\operatorname{RRE}(A)$ to A. However, if $r<m$ then any $r+1$ rows of $\operatorname{RRE}(A)$ will be dependent as they will include a zero row. Any independency of $r+1$ rows of A would lead to such an independency in $\operatorname{RRE}(A)$ - a contradiction - and hence any $r+1$ rows of A are dependent.

