Solution (#715) Let A and B be $m \times n$ matrices. Let $\mathbf{a}_1, \dots, \mathbf{a}_m$ denote the rows of A and $\mathbf{b}_1, \dots, \mathbf{b}_m$ denote the rows of B.

Suppose that Row(A+B) = Row(A). Then $\mathbf{a}_1 + \mathbf{b}_1$ can be written as a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_m$ and so \mathbf{b}_1 can be written as a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_m$. That is \mathbf{b}_1 is in Row(A). This is true for each such \mathbf{b}_i and hence Row(B) is contained in Row(A).

But the converse is not true. Consider the matrices

$$A=\left(\begin{array}{cccc}1&1&1\end{array}\right)\qquad\text{and}\qquad B=\left(\begin{array}{cccc}-1&-1&-1\end{array}\right).$$

Then Row(B) is contained in Row(A) (in fact they're equal) but Row(A+B) is the zero space.