Solution (\#726) Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \neq \mathbf{0}$ so that the hyperplane has equation $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=c$. For it to contain the origin $(0,0, \ldots 0)$ means that $c=0$. Conversely if $c=0$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ are in the hyperplane with α, β are real constants then

$$
\begin{aligned}
& a_{1}\left(\alpha v_{1}+\beta w_{1}\right)+a_{2}\left(\alpha v_{2}+\beta w_{2}\right)+\cdots+a_{n}\left(\alpha v_{n}+\beta w_{n}\right) \\
= & \alpha\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right)+\beta\left(a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}\right) \\
= & \alpha 0+\beta 0=0
\end{aligned}
$$

showing that $\alpha \mathbf{v}+\beta \mathbf{w}$ is in the hyperplane, and so the hyperplane is a subspace.
When $c=0$ then the hyperplane is the solution space to the linear system

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array} 0\right)
$$

which when reduced will have one leading 1 and $n-1$ columns without a leading 1 . Thus the solution space has dimension $n-1$.

