
Solution (#745) (i) Let A = (aij) be an upper triangular n× n matrix. Note that
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i � then Wi is A-invariant, dimWi = i and Wi is contained in Wi+1.

(ii) Let B be an n× n matrix such that there are are B-invariant subspaces Vi of Rn, for i = 1, . . . , n, such that
dimVi = i and Vi is contained in Vi+1 for 1 � i < n. If there were an invertible matrix P such that P−1BP = A is
upper triangular then we know from #744 (ii) that the B-invariant subspaces are PW where W is A-invariant. By
the first part then we would see that the columns of P, which equal PeTi have the property that PeTi is in Vi and not
in Vi−1.

So given such B-invariant subspaces Vi we will choose for each i a vector vi in Vi that isn’t in Vi−1. By #723 such
vectors will form a basis and so P = (v1 |v2 | . . . |vn) is invertible. As the subspaces Vi are B-invariant then we have

Bv1 = a11v1, Bv2 = a12v1 + a22v2, Bv3 = a13v1 + a23v2 + a33v3,

and so on. Hence

BP = (Bv1 |Bv2 | . . . |Bvn)

= (a11v1 | a12v1 + a22v2 | . . . | a13v1 + a23v2 + a33v3)

= (v1 |v2 | . . . |vn)
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= PA.

Hence P−1BP = A as required.


