Solution (\#745) (i) Let $A=\left(a_{i j}\right)$ be an upper triangular $n \times n$ matrix. Note that

$$
A \mathbf{e}_{1}^{T}=a_{11} \mathbf{e}_{1}^{T}, \quad A \mathbf{e}_{2}^{T}=a_{12} \mathbf{e}_{1}^{T}+a_{22} \mathbf{e}_{2}^{T},, \quad A \mathbf{e}_{3}^{T}=a_{13} \mathbf{e}_{1}^{T}+a_{23} \mathbf{e}_{2}^{T}+a_{33} \mathbf{e}_{3}^{T}
$$

and in general
and

$$
A \mathbf{e}_{i}^{T} \quad \text { is in }\left\langle\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}, \ldots, \mathbf{e}_{i}^{T}\right\rangle
$$

$$
A \mathbf{e}_{i}^{T} \quad \text { is in }\left\langle\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}, \ldots, \mathbf{e}_{j}^{T}\right\rangle \quad \text { when } i \leqslant j .
$$

So if we set $W_{i}=\left\langle\mathbf{e}_{1}^{T}, \mathbf{e}_{2}^{T}, \ldots, \mathbf{e}_{i}^{T}\right\rangle$ then W_{i} is A-invariant, $\operatorname{dim} W_{i}=i$ and W_{i} is contained in W_{i+1}.
(ii) Let B be an $n \times n$ matrix such that there are are B-invariant subspaces V_{i} of \mathbb{R}_{n}, for $i=1, \ldots, n$, such that $\operatorname{dim} V_{i}=i$ and V_{i} is contained in V_{i+1} for $1 \leqslant i<n$. If there were an invertible matrix P such that $P^{-1} B P=A$ is upper triangular then we know from $\# 744$ (ii) that the B-invariant subspaces are $P W$ where W is A-invariant. By the first part then we would see that the columns of P, which equal $P \mathbf{e}_{i}^{T}$ have the property that $P \mathbf{e}_{i}^{T}$ is in V_{i} and not in V_{i-1}.

So given such B-invariant subspaces V_{i} we will choose for each i a vector \mathbf{v}_{i} in V_{i} that isn't in V_{i-1}. By $\# 723$ such vectors will form a basis and so $P=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{n}\right)$ is invertible. As the subspaces V_{i} are B-invariant then we have

$$
B \mathbf{v}_{1}=a_{11} \mathbf{v}_{1}, \quad B \mathbf{v}_{2}=a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}, \quad B \mathbf{v}_{3}=a_{13} \mathbf{v}_{1}+a_{23} \mathbf{v}_{2}+a_{33} \mathbf{v}_{3}
$$

and so on. Hence

$$
\begin{aligned}
B P & =\left(B \mathbf{v}_{1}\left|B \mathbf{v}_{2}\right| \ldots \mid B \mathbf{v}_{n}\right) \\
& =\left(a_{11} \mathbf{v}_{1}\left|a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}\right| \ldots \mid a_{13} \mathbf{v}_{1}+a_{23} \mathbf{v}_{2}+a_{33} \mathbf{v}_{3}\right) \\
& =\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{n}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
0 & a_{22} & a_{23} & \cdots \\
0 & 0 & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=P A .
\end{aligned}
$$

Hence $P^{-1} B P=A$ as required.

