Solution (#745) (i) Let $A = (a_{ij})$ be an upper triangular $n \times n$ matrix. Note that

$$A\mathbf{e}_{1}^{T} = a_{11}\mathbf{e}_{1}^{T}, \qquad A\mathbf{e}_{2}^{T} = a_{12}\mathbf{e}_{1}^{T} + a_{22}\mathbf{e}_{2}^{T}, \qquad A\mathbf{e}_{3}^{T} = a_{13}\mathbf{e}_{1}^{T} + a_{23}\mathbf{e}_{2}^{T} + a_{33}\mathbf{e}_{3}^{T}$$

and in general

$$A\mathbf{e}_i^T$$
 is in $\langle \mathbf{e}_1^T, \mathbf{e}_2^T, \dots, \mathbf{e}_i^T \rangle$

and

$$A\mathbf{e}_i^T$$
 is in $\langle \mathbf{e}_1^T, \mathbf{e}_2^T, \dots, \mathbf{e}_i^T \rangle$ when $i \leq j$.

So if we set $W_i = \langle \mathbf{e}_1^T, \mathbf{e}_2^T, \dots, \mathbf{e}_i^T \rangle$ then W_i is A-invariant, dim $W_i = i$ and W_i is contained in W_{i+1} .

(ii) Let B be an $n \times n$ matrix such that there are B-invariant subspaces V_i of \mathbb{R}_n , for i = 1, ..., n, such that $\dim V_i = i$ and V_i is contained in V_{i+1} for $1 \le i < n$. If there were an invertible matrix P such that $P^{-1}BP = A$ is upper triangular then we know from #744 (ii) that the B-invariant subspaces are PW where W is A-invariant. By the first part then we would see that the columns of P, which equal $P\mathbf{e}_i^T$ have the property that $P\mathbf{e}_i^T$ is in V_i and not in V_{i-1} .

So given such *B*-invariant subspaces V_i we will choose for each i a vector \mathbf{v}_i in V_i that isn't in V_{i-1} . By #723 such vectors will form a basis and so $P = (\mathbf{v}_1 \mid \mathbf{v}_2 \mid \dots \mid \mathbf{v}_n)$ is invertible. As the subspaces V_i are *B*-invariant then we have

$$B\mathbf{v}_1 = a_{11}\mathbf{v}_1, \quad B\mathbf{v}_2 = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2, \quad B\mathbf{v}_3 = a_{13}\mathbf{v}_1 + a_{23}\mathbf{v}_2 + a_{33}\mathbf{v}_3,$$

and so on. Hence

$$BP = (B\mathbf{v}_{1} | B\mathbf{v}_{2} | \dots | B\mathbf{v}_{n})$$

$$= (a_{11}\mathbf{v}_{1} | a_{12}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} | \dots | a_{13}\mathbf{v}_{1} + a_{23}\mathbf{v}_{2} + a_{33}\mathbf{v}_{3})$$

$$= (\mathbf{v}_{1} | \mathbf{v}_{2} | \dots | \mathbf{v}_{n}) \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots \\ 0 & a_{22} & a_{23} & \dots \\ 0 & 0 & a_{33} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = PA.$$

Hence $P^{-1}BP = A$ as required.