Solution (\#749) Let $\mathbf{v}_{1}=(1,1,2,1), \mathbf{v}_{2}=(2,4,4,1), \mathbf{v}_{3}=(0,2,0,-1)$. Note that

$$
\mathbf{v}_{2}-2 \mathbf{v}_{1}=\mathbf{v}_{3}
$$

and hence \mathbf{v}_{1} and \mathbf{v}_{2} span $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle$. As \mathbf{v}_{1} and \mathbf{v}_{2} are clearly independent then \mathbf{v}_{1} and \mathbf{v}_{2} form a basis.
If we wished to be more algorithmic in our answer, we can put the three vectors as the rows of a matrix and row-reduce it. We then see

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
2 & 4 & 4 & 1 \\
0 & 2 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 2 & 0 & -1 \\
0 & 2 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 3 / 2 \\
0 & 1 & 0 & -1 / 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and the non-zero rows form a basis.

