Solution (\#768) Let A be an $m \times n$ matrix of rank r and

$$
V=\left\{X \in M_{n p}: A X=0\right\} .
$$

If X_{1} and X_{2} are in V and α_{1}, α_{2} are real scalars then

$$
A\left(\alpha_{1} X_{1}+\alpha_{2} X_{2}\right)=\alpha_{1} A X_{1}+\alpha_{2} A X_{2}=\alpha_{1} 0_{m p}+\alpha_{2} 0_{m p}=0_{m p}
$$

and so $\alpha_{1} X_{1}+\alpha_{2} X_{2}$ lies in V. Clearly also $0_{n p}$ lies in V, and so V is a subspace of $M_{n p}$.
If X is in V and $\mathbf{c}_{1}, \ldots, \mathbf{c}_{p}$ are the columns of X then

$$
A X=\left(A \mathbf{c}_{1}|\cdots| A \mathbf{c}_{p}\right)=0_{m p}
$$

if and only if each \mathbf{c}_{i} is in the null space of the map μ_{A} from \mathbb{R}_{n} to \mathbb{R}_{m}. By the rank-nullity theorem we know that this null space has dimension $n-r$. Thus a matrix X in V is made up of column vectors from the null space of μ_{A} and these p columns may be independently chosen. It follows that

$$
\operatorname{dim} V=p(n-r)
$$

