Solution (\#778) Let A be an $m \times n$ matrix of row rank r and let $\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}$ denote the rows of A. Recall from \#711 that r is the largest number such that A has r independent rows.

Let Q be an $n \times n$ invertible matrix. The rows of $A Q$ are $\mathbf{r}_{1} Q, \ldots, \mathbf{r}_{m} Q$. So if there is a linear dependency in the rows of A

$$
\alpha_{1} \mathbf{r}_{1}+\cdots+\alpha_{m} \mathbf{r}_{m}=\mathbf{0}
$$

then there is a linear dependency in the rows of $A Q$

$$
\alpha_{1}\left(\mathbf{r}_{1} Q\right)+\cdots+\alpha_{m}\left(\mathbf{r}_{m} Q\right)=\left(\alpha_{1} \mathbf{r}_{1}+\cdots+\alpha_{m} \mathbf{r}_{m}\right) Q=\mathbf{0} Q=\mathbf{0}
$$

It follows that the row rank of $A Q$ is at least that of the row rank of A. But as Q^{-1} is also invertible it follows that the row rank of $A Q$ in fact equals the row rank of A.

Let s denote the column rank of A and let P be an $m \times m$ invertible matrix. Now, as any linear dependency in the columns of A is equivalent to a linear dependency in the rows of A^{T}, we can see that s is the largest number such that A has s independent columns. As above, any dependency in the columns of A corresponds to a linear dependency in the columns of $P A$ and thus the column rank of A equals the column rank of A.

We also recall at this point that the rowspace of $P A$ equals the rowspace of A (Proposition 3.88(d)) and likewise that the column space of $A Q$ equals the column space of A.

By \#691 there is an invertible $m \times m$ matrix P and invertible $n \times n$ matrix Q such that

$$
P A Q=\left(\begin{array}{cc}
I_{r} & 0_{r(n-r)} \\
0_{(m-r) r} & 0_{(m-r)(n-r)}
\end{array}\right)
$$

The row rank and column rank of $P A Q$ both equal r. So by the above we have

$$
\begin{aligned}
\text { row rank of } A & =\text { row rank of } P A Q \\
& =\text { column rank of } P A Q \\
& =\text { column rank of } A
\end{aligned}
$$

