Solution (\#792) Let A be an $n \times n$ matrix.
(i) Suppose that A is invertible. A line in \mathbb{R}^{n} can be parametrized as $\mathbf{r}(\lambda)=\mathbf{p}+\lambda \mathbf{v}$ where $\mathbf{v} \neq \mathbf{0}$. Its image is parametrized as

$$
A \mathbf{r}(\lambda)=A(\mathbf{p}+\lambda \mathbf{v})=A \mathbf{p}+\lambda A \mathbf{v}
$$

As A is invertible then $A \mathbf{v} \neq \mathbf{0}$ (Proposition 198) and so the image is still a line.
(ii) Say now that A is singular. Arguing as before we have image points

$$
A \mathbf{r}(\lambda)=A \mathbf{p}+\lambda A \mathbf{v}
$$

If $A \mathbf{v}=\mathbf{0}$ then the image is the point $A \mathbf{p}$ and if $A \mathbf{v} \neq \mathbf{0}$ then the image is still a line as in the previous part.
(iii) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

which is singular. The line $y=x$ is mapped to the line $y=2 x$. The line $x+2 y=0$ is entirely mapped to the origin.

