Solution (#805) Let X be an $m \times n$ such that $m \ge n$ and $X^T X$ is invertible. Let $P = X(X^T X)^{-1} X^T$. (i) Then by associativity of matrix multiplication

$$P^{2} = (X(X^{T}X)^{-1}X^{T}) (X(X^{T}X)^{-1}X^{T})$$

= $X(X^{T}X)^{-1}(X^{T}X)(X^{T}X)^{-1}X^{T}$
= $X(X^{T}X)^{-1}X^{T} = P.$

(ii) Also by the product rule for transposes and transpose rule for inverses we also have

$$P^{T} = (X(X^{T}X)^{-1}X^{T})^{T}$$

= $X^{TT} [(X^{T}X)^{-1}]^{T} X^{T}$
= $X [(X^{T}X)^{T}]^{-1} X^{T}$
= $X (X^{T}X^{TT})^{-1} X^{T}$
= $X (X^{T}X)^{-1} X^{T} = P.$

(iii) By the trace product rule we also have

(iv) Further

$$X^{T}(I_{m} - P) = X^{T} (I_{m} - X(X^{T}X)^{-1}X^{T})$$

= $X^{T} - (X^{T}X)(X^{T}X)^{-1}X^{T}$
= $X^{T} - X^{T} = 0.$

(v) Say that $\mathbf{y} = X\mathbf{v}$. Then set $\mathbf{v} = (X^T X)^{-1} X^T \mathbf{y}$ and we see $X\mathbf{v} = X(X^T X)^{-1} X^T \mathbf{y} = P\mathbf{y} = \mathbf{y}$

as required.

(vi) The vectors in the column space of X are those of the form $X\mathbf{v}$ for some \mathbf{v} (Proposition 3.125). So (v) shows that $P\mathbf{y} = \mathbf{y}$ for precisely those \mathbf{y} in the column space of X. Further for any \mathbf{v} in \mathbb{R}_n and \mathbf{y} in \mathbb{R}_m we have that

$$\mathbf{v}^T X^T (I_m - P) \mathbf{y} = 0$$

which shows that $\mathbf{y} - P\mathbf{y}$ is perpendicular to every vector $X\mathbf{v}$ in the column space of X.