
Solution (#805) Let X be an m× n such that m � n and XT
X is invertible. Let P = X(XT
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(ii) Also by the product rule for transposes and transpose rule for inverses we also have
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(iii) By the trace product rule we also have

trace(P ) = trace(X(XT
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= trace(In) = n.

(iv) Further
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(v) Say that y = Xv. Then set v = (XT
X)−1XTy and we see

Xv = X(XT
X)−1XT

y = Py = y

as required.
(vi) The vectors in the column space of X are those of the form Xv for some v (Proposition 3.125). So (v) shows

that Py = y for precisely those y in the column space of X. Further for any v in Rn and y in Rm we have that

vTXT (Im − P )y = 0

which shows that y− Py is perpendicular to every vector Xv in the column space of X.


