Solution (#833) (i) Calculation of the first determinant for small values of n > 1 gives

x, 0, —z2, —a3, 0, z°, 8, o,... (10.27)
By expanding along the first column
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by expanding the last determinant along the first row. The auxiliary equation A> — 2\ + 22 = 0 has roots A = za and
A = z/a where a = cis(7/3) is a cube root of —1. Hence
an = (Aa™ + Ba™™)z",
for some A, B. From this we can see that a,,+3 = —23a,, and hence the sequence a,, does indeed continue as is suggested

by the list in (10.27).

(ii) Calculation of the second determinant for small values of n > 1 gives
z? 0, 0, 8 z0, 0, 0, 10 .

) )

By expanding along the first row
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By the last determinant along the first row again and then down the first column we find
b, = :I,‘an_l - l‘s(l‘bn_z - xsbn—?)) = xzbn—l - x4bn—2 + xGbn—S-

So we have b,, = 22b,,_1 — *b,,_o + 2%b,,_5. From this we can see that

2 4 6
bn+4 = T bn+3 - bn+2 +x bn+1
2 2 4 6 4 6
= (CL' bn+2 - bn+1 +x bn) - bn+2 +x bn+1
= 2%,.

So the pattern repeats as we saw for small values: b,, = e, 22" where e, repeats the sequence 1,0,0, 1 with period 4.
(iii) Denote the determinant b, from (ii) now as b, (x) to stress its dependence on x. As det M = det M* for square
matrices we then have that ¢, (z) equals
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which is #37b,, (271) . So with e, again denoting the repeating sequence 1,0,0,1,1,0,0,1,... we see
2n n

en = 3, (x_l) =e,x".



