Solution (#834) Denote the first determinant as D,,. Then expanding down the first column we have
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So we have
D,, — (Of + 6) Dy + aﬁDn—Z =0.

From our knowledge of recurrence relations we have that
D,, = Aa™ + Bp"
for some constants A, B. Now by calculation and inspection
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a—p a—pf
Hence A = —B = (o — 3)~! and we have
an+1_/6n+1
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If A,, denotes the second given determinant then we can down the first column to again arrive at
An = bAn—l - CaAn_z.
As with the first determinant we then have that
A, = Ay" + B6"
for some A, B and where «, d are the roots of
z? — bz + ca = 0.
As A; = b and Ay = b2 — ac we have
b= Ay + BJ, b — ac = Ay? 4+ B&>.
With some algebra, and noting b = v 4 § and ac = 4, we see that
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If we wish to rewrite this in terms of a, b, ¢ we can write
77b+\/b274ac b—Vb? —4dac
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and then

by the binomial theorem.




