Solution (\#873) (i) Suppose that A is singular. In $\# 871$ we showed that

$$
\operatorname{det}(\operatorname{adj} B)=(\operatorname{det} B)^{n-1}
$$

for an invertible matrix B. So we have that

$$
\operatorname{det}(\operatorname{adj}(A-x I))=(\operatorname{det}(A-x I))^{n-1}
$$

except for finitely many values of x when $A-x I$ is singular. The LHS and RHS above are then two polynomials that agree except possibly for finitely many values. As two distinct polynomials in x can only agree at most finitely many values it follows that the two polynomials above are equal for all values of x.

The desired result follows when we set $x=0$.
(ii) Let A and B be $n \times n$ matrices which are not necessarily invertible. Each of the matrices $A-x I_{n}$ and $B-x I_{n}$ are invertible except for only finitely many values of x. By $\# 872$, except potentially for finitely many values of x, we have

$$
\operatorname{adj}\left(\left(A-x I_{n}\right)\left(B-x I_{n}\right)\right)=\operatorname{adj}\left(B-x I_{n}\right) \operatorname{adj}\left(A-x I_{n}\right) .
$$

Both sides of this equation are polynomials, which agree except for finitely many values. However two distinct polynomials can only agree on a finite set of roots. It follows that the two sides are in fact the same polynomial. If we set $x=0$ then we conclude

$$
\operatorname{adj}(A B)=\operatorname{adj} B \operatorname{adj} A
$$

holds even when A and/or B is singular.

