Solution (#897) Suppose that **a** and **b** are linearly independent vectors in \mathbb{R}^3 . Then $\mathbf{a} \wedge \mathbf{b} \neq \mathbf{0}$. Say that

 $\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{a} \wedge \mathbf{b} = \mathbf{0}.$ If we dot this with $\mathbf{a} \wedge \mathbf{b}$ then we see and hence $\gamma = 0$. But then $\alpha \mathbf{a} + \beta \mathbf{b} = \mathbf{0},$ and as \mathbf{a} and \mathbf{b} are independent then $\alpha = \beta = 0$. The result follows.