Solution (\#902) Let a be a non-zero vector in \mathbb{R}^{3}. Note that any multiple of a clearly satisfies the given equation. So assume now that this is not the case, or equivalently that $\mathbf{r} \wedge \mathbf{a} \neq \mathbf{0}$.

By Proposition 3.184 we have

$$
\mathbf{0}=(\mathbf{r} \wedge \mathbf{a}) \wedge \mathbf{r}=(\mathbf{r} \cdot \mathbf{r}) \mathbf{a}-(\mathbf{r} \cdot \mathbf{a}) \mathbf{r} .
$$

If we take the vector product with a we see

$$
\begin{gathered}
(\mathbf{r} \cdot \mathbf{a})(\mathbf{r} \wedge \mathbf{a})=\mathbf{0} \\
(\mathbf{r} \cdot \mathbf{r}) \mathbf{a}=\mathbf{0}
\end{gathered}
$$

As $\mathbf{a} \neq \mathbf{0}$ then $\mathbf{r} \cdot \mathbf{r}=0$ and so $\mathbf{r}=\mathbf{0}$, but this contradicts $\mathbf{r} \wedge \mathbf{a} \neq \mathbf{0}$.
In conclusion the only solutions of the equation

$$
(\mathbf{r} \wedge \mathbf{a}) \wedge \mathbf{r}=\mathbf{0}
$$

are of the form $\mathbf{r}=\lambda \mathbf{a}$ where λ is a real number.

