Solution (#918) Say A is an invertible $n \times n$ matrix. So in particular its eigenvalues are non-zero. Note that

$$c_{A^{-1}}(\lambda) = \det(\lambda I - A^{-1})$$

$$= \det\left(-\lambda \left(\frac{1}{\lambda}I - A\right)A^{-1}\right)$$

$$= (-\lambda)^n \det\left(\frac{1}{\lambda}I - A\right) \det A^{-1}$$

$$= (-\lambda)^n \det A^{-1}c_A\left(\frac{1}{\lambda}\right).$$

So

$$\lambda$$
 is an eigenvalue of A^{-1} \iff $c_{A^{-1}}(\lambda) = 0$ \Leftrightarrow $\det(\lambda I - A^{-1}) = 0$ \Leftrightarrow $(-\lambda)^n \det A^{-1} c_A \left(\frac{1}{\lambda}\right) = 0$ \Leftrightarrow $c_A \left(\frac{1}{\lambda}\right) = 0$.

Hence the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A.