Solution (\#927) (i) The matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

is singular and diagonalizable.
(ii) The matrix

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
$$

is invertible and diagonalizable.
(iii) Either of the matrices from (i) and (ii) would suffice as upper triangular matrices which are diagonalizable. (iv) The matrix

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

is singular, not diagonalizable over \mathbb{R} but is diagonalizable over \mathbb{C}.

