Solution (\#932) Let A be a square matrix.
(a) let \mathbf{v} be a λ-eigenvector of A and $c \neq 0$. Then $c \mathbf{v} \neq \mathbf{0}$ and

$$
A(c \mathbf{v})=c A(\mathbf{v})=c \lambda \mathbf{v}=\lambda(c \mathbf{v})
$$

and so $c \mathbf{v}$ is a λ-eigenvector.
(b) Say \mathbf{v} and \mathbf{w} are independent λ-eigenvectors and c, d are not both zero. Then $c \mathbf{v}+d \mathbf{w} \neq \mathbf{0}$ and

$$
\begin{aligned}
A(c \mathbf{v}+d \mathbf{w}) & =c A \mathbf{v}+d A \mathbf{w} \\
& =c \lambda \mathbf{v}+d \lambda \mathbf{w} \\
& =\lambda(c \mathbf{v}+d \mathbf{w})
\end{aligned}
$$

Hence $c \mathbf{v}+d \mathbf{w}$ is a λ-eigenvector.

