Solution (#947) Let A be a diagonalizable $n \times n$ matrix and let $k \ge 0$ be an integer. This then means that there is an invertible P such that

$$P^{-1}AP = D$$

is diagonal. So

$$P^{-1}A^kP = (P^{-1}AP)^k = D^k$$

which is also diagonal. Hence A^k is diagonalizable.

We have already seen in #925 that

$$B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

is not diagonalizable, yet $B^2=0_{22}$ is diagonal and hence diagonalizable.