Solution (#962) Say that $|| \quad ||$ is a norm on \mathbb{R}^n and define

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

M1: By N1 we have $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y} , and if $d(\mathbf{x}, \mathbf{y}) = 0$ then $\mathbf{x} - \mathbf{y} = \mathbf{0}$ by N1 again and $\mathbf{x} = \mathbf{y}$. M2: By N2 we have

 $d(\mathbf{y}, \mathbf{x}) = \|\mathbf{y} - \mathbf{x}\| = \|(-1)(\mathbf{x} - \mathbf{y})\| = |-1| \|\mathbf{x} - \mathbf{y}\| = \|\mathbf{x} - \mathbf{y}\| = d(\mathbf{x}, \mathbf{y}).$

M3: Finally for vectors $\mathbf{x},\,\mathbf{y}$ and \mathbf{z} we have

$$d(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\|$$

= $\|(\mathbf{x} - \mathbf{y}) + (\mathbf{y} - \mathbf{z})\|$
 $\leqslant \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\|$ [by N3]
= $d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$