Solution (\#962) Say that $\left\|\|\right.$ is a norm on \mathbb{R}^{n} and define

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|
$$

M1: By N1 we have $d(\mathbf{x}, \mathbf{y}) \geqslant 0$ for all \mathbf{x} and \mathbf{y}, and if $d(\mathbf{x}, \mathbf{y})=0$ then $\mathbf{x}-\mathbf{y}=\mathbf{0}$ by N1 again and $\mathbf{x}=\mathbf{y}$.
M2: By N2 we have

$$
d(\mathbf{y}, \mathbf{x})=\|\mathbf{y}-\mathbf{x}\|=\|(-1)(\mathbf{x}-\mathbf{y})\|=|-1|\|\mathbf{x}-\mathbf{y}\|=\|\mathbf{x}-\mathbf{y}\|=d(\mathbf{x}, \mathbf{y})
$$

M3: Finally for vectors \mathbf{x}, \mathbf{y} and \mathbf{z} we have

$$
\begin{aligned}
d(\mathbf{x}, \mathbf{z}) & =\|\mathbf{x}-\mathbf{z}\| \\
& =\|(\mathbf{x}-\mathbf{y})+(\mathbf{y}-\mathbf{z})\| \\
& \leqslant\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| \quad[\text { by N3] } \\
& =d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z}) .
\end{aligned}
$$

