Solution (#966) For \mathbf{x} in \mathbb{R}^n we define $||\mathbf{x}||_1 = D(\mathbf{0}, \mathbf{x})$ and $||\mathbf{x}||_{\infty} = \delta(\mathbf{0}, \mathbf{x})$

We then have

$$||\mathbf{x}||_1 = D(\mathbf{0}, \mathbf{x}) = \sum_{k=1}^n |x_k|; \qquad ||\mathbf{x}||_{\infty} = \delta(\mathbf{0}, \mathbf{x}) = \max\{|x_1|, |x_2|, \dots, |x_n|\}.$$

N1: Note that

$$||\mathbf{x}||_1 \geqslant 0$$
 and $||\mathbf{x}||_1 = 0$ if and only if $x_i = 0$ for each i , i.e. $\mathbf{x} = \mathbf{0}$. $||\mathbf{x}||_{\infty} \geqslant 0$ and $||\mathbf{x}||_{\infty} = 0$ if and only if $x_i = 0$ for each i , i.e. $\mathbf{x} = \mathbf{0}$.

N2: Let $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$. Then

$$||\alpha \mathbf{x}||_{1} = \sum_{k=1}^{n} |\alpha x_{k}| = |\alpha| \sum_{k=1}^{n} |x_{k}| = |\alpha| ||\mathbf{x}||_{1};$$

$$||\alpha \mathbf{x}||_{\infty} = \max \{|\alpha x_{1}|, \dots, |\alpha x_{n}|\} = |\alpha| \max \{|x_{1}|, \dots, |x_{n}|\} = |\alpha| ||\mathbf{x}||_{\infty}.$$

N3: Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then by the usual triangle inequality we have

$$||\mathbf{x} + \mathbf{y}||_{1} = \sum_{k=1}^{n} |x_{k} + y_{k}| \leq \sum_{k=1}^{n} |x_{k}| + \sum_{k=1}^{n} |y_{k}| = ||\mathbf{x}||_{1} + ||\mathbf{y}||_{1};$$

$$||\mathbf{x} + \mathbf{y}||_{\infty} = \max\{|x_{1} + y_{1}|, \dots, |x_{n} + y_{n}|\} \leq \max\{|x_{1}|, \dots, |x_{n}|\} + \max\{|y_{1}|, \dots, |y_{n}|\} = ||\mathbf{x}||_{\infty} + ||\mathbf{y}||_{\infty}.$$

Recall that the parallelogram law states that for any \mathbf{v} , \mathbf{w} we have

$$||\mathbf{v} + \mathbf{w}||^2 + ||\mathbf{v} - \mathbf{w}||^2 = 2||\mathbf{v}||^2 + 2||\mathbf{w}||^2$$
.

If we choose $\mathbf{v} = (1,0)$, $\mathbf{w} = (0,1)$ in \mathbb{R}^2 then

$$||\mathbf{v} + \mathbf{w}||_1^2 + ||\mathbf{v} - \mathbf{w}||_1^2 = 2^2 + 2^2 = 8;$$

 $2||\mathbf{v}||_1^2 + 2||\mathbf{w}||_1^2 = 2 \times 1^2 + 2 \times 1^2 = 4,$

whilst

$$||\mathbf{v} + \mathbf{w}||_{\infty}^{2} + ||\mathbf{v} - \mathbf{w}||_{\infty}^{2} = 1^{2} + 1^{2} = 2;$$

 $2||\mathbf{v}||_{\infty}^{2} + 2||\mathbf{w}||_{\infty}^{2} = 2 \times 1^{2} + 2 \times 1^{2} = 4.$

Hence neither of these norms satisfy the parallelogram law.