
Solution (#971) For m× n matrices we can define

A ·B = trace(BTA).

Let P,Q,R be m× n matrices and α, β be real numbers.
IP1: Note that
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IP2: Now for a square matrix M we have trace(MT ) = trace(M). As BTA is n× n we have
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IP3: Finally for an m× n matrix P we have
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=
n�

i=1

�
PTP

�
ii

=
n�

i=1

�
m�

k=1

�
PT
�
ik
[P ]

ki

�

=
n�

i=1

m�

k=1

([P ]
ki
)2 � 0

and we have P · P = 0 if and only if [Pki] = 0 for each k, i. That is, if and only if P = 0.
Note generally that
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This is the same as the dot product on Rn
2

when we identify a n× n matrix P with
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