Solution (#971) For $m \times n$ matrices we can define

$$A \cdot B = \operatorname{trace}(B^T A).$$

Let P,Q,R be $m\times n$ matrices and α,β be real numbers. IP1: Note that

$$(\alpha P + \beta Q) \cdot R = \operatorname{trace} \left(R^T \left(\alpha P + \beta Q \right) \right)$$
$$= \alpha \operatorname{trace} \left(R^T P \right) + \beta \operatorname{trace} \left(R^T Q \right)$$
$$= \alpha \left(P \cdot R \right) + \beta \left(Q \cdot R \right).$$
IP2: Now for a square matrix M we have $\operatorname{trace}(M^T) = \operatorname{trace}(M)$. As $B^T A$ is $n \times n$ we have $P \cdot Q = \operatorname{trace}(Q^T P)$

$$Q = \operatorname{trace}(Q^T P)$$

= $\operatorname{trace}((Q^T P)^T)$
= $\operatorname{trace}(P^T Q^{TT})$
= $\operatorname{trace}(P^T Q)$
= $Q \cdot P.$

IP3: Finally for an $m \times n$ matrix P we have

$$P \cdot P = \operatorname{trace}(P^T P)$$
$$= \sum_{i=1}^n \left[P^T P\right]_{ii}$$
$$= \sum_{i=1}^n \left(\sum_{k=1}^m \left[P^T\right]_{ik} \left[P\right]_{ki}\right)$$
$$= \sum_{i=1}^n \sum_{k=1}^m \left(\left[P\right]_{ki}\right)^2 \ge 0$$

and we have $P \cdot P = 0$ if and only if $[P_{ki}] = 0$ for each k, i. That is, if and only if P = 0. Note generally that

$$P \cdot Q = \operatorname{trace}(Q^T P) = \sum_{i=1}^n \left(\sum_{k=1}^m \left[P_{ki} \right] \left[Q \right]_{ki} \right).$$

This is the same as the dot product on \mathbb{R}^{n^2} when we identify a $n \times n$ matrix P with

 $([P]_{11}, \ldots, [P]_{1n}, [P]_{21}, \ldots, [P]_{2n}, \ldots, [P]_{m1}, \ldots, [P]_{mn}).$