Solution (#972) (i) Let

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

where a, b, c, d > 0. Then $c_A(x) = x^2 - (a + d)x + (ad - bc)$. As this quadratic has discriminant

$$(a+d)^2 - 4(ad - bc) = (a-d)^2 + 4bc > 0$$

then A has two distinct real eigenvalues r, s where s < r. Further as r + s = a + d > 0 then r is positive.

- (ii) Also as r + s > 0 even if s < 0 it is the case that |s| = -s < r.
- (iii) For our matrix, and using results from #969 we have

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}| = \max \{a+b, c+d\}.$$

If $a + b \ge c + d$ then we have

$$r = \frac{(a+d) + \sqrt{(a-d)^2 + 4bc}}{2} \leqslant a+b \quad \iff \quad c+d \leqslant b+a.$$

And a similar argument follows if $c + d \ge a + b$ that $r \le c + d$.

- (iv) r is not a repeated root as we have already shown that the roots are distinct.
- (v) With r as above, the r-eigenspace is the null space of $rI_2 A$ which is spanned by $\mathbf{v} = (b, r a)^T$. As

$$r > \frac{(a+d) + (a-d)}{2} = a$$

then this r-eigenvector has all-positive co-ordinates.

- (vi) Say that **x** is an s-eigenvector which is a multiple of $(b, s a)^T$. As s a < 0 then any s-eigenvector has co-ordinates with different signs.
 - (vii) For

$$A^T = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right),$$

and noting (r-a)(s-a) = -bc, we similarly have $\mathbf{w} = (c, r-a)^T$. We then have

$$P = \frac{\mathbf{v}\mathbf{w}^T}{\mathbf{w}^T\mathbf{v}} = \frac{1}{(r-a)^2 + bc} \begin{pmatrix} bc & b(r-a) \\ c(r-a) & (r-a)^2 \end{pmatrix}.$$

Note further that as the quadratic $c_A(x)$ has r and s as roots, we have rs = ad - bc and r + s = a + d and hence

$$(r-a)(s-a) = -bc$$
 and $(r-a)(r-s) = (r-a)^2 + bc$.

So the above matrix simplifies to

$$P = \frac{1}{(r-a)(r-s)} \left(\begin{array}{cc} (r-a)(a-s) & b(r-a) \\ c(r-a) & (r-a)^2 \end{array} \right) = \frac{1}{r-s} \left(\begin{array}{cc} a-s & b \\ c & r-a \end{array} \right).$$

Now with

$$X = \begin{pmatrix} b & b \\ r-a & s-a \end{pmatrix}$$
 so that $X^{-1} = \frac{1}{b(s-r)} \begin{pmatrix} s-a & -b \\ a-r & b \end{pmatrix}$,

and $P^{-1}AP = diag(r, s)$ we have

$$\frac{A^k}{r^k} = \frac{1}{r^k} \left(X \operatorname{diag}(r^k, s^k) X^{-1} \right) = X \operatorname{diag} \left(1, \frac{s^k}{r^k} \right) X^{-1}.$$

As |s| < r then in the limit A^k/r^k approximates as required to

$$X \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X^{-1} = \frac{1}{b(s-r)} \begin{pmatrix} b(s-a) & -b^2 \\ (r-a)(s-a) & b(a-r) \end{pmatrix} = \frac{1}{r-s} \begin{pmatrix} a-s & b \\ c & r-a \end{pmatrix}.$$

(viii) The second column of P is clearly a multiple of \mathbf{v} and we also note

$$\left(\begin{array}{c} a-s \\ c \end{array}\right) = \frac{c}{r-a} \left(\begin{array}{c} b \\ r-a \end{array}\right)$$

as (r-a)(s-a) = -bc. So P has rank one and column space spanned by v. Finally P is a projection matrix as

$$P^2 = \left(\frac{\mathbf{v}\mathbf{w}^T}{\mathbf{w}^T\mathbf{v}}\right) \left(\frac{\mathbf{v}\mathbf{w}^T}{\mathbf{w}^T\mathbf{v}}\right) = \frac{\mathbf{v}(\mathbf{w}^T\mathbf{v})\mathbf{w}^T}{(\mathbf{w}^T\mathbf{v})^2} = \frac{\mathbf{v}\mathbf{w}^T}{\mathbf{w}^T\mathbf{v}} = P.$$